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before, but the Si=O vibrations of matrix-isolated SiO and SSiO 
and the antisymmetric stretch of matrix-isolated SiO2 occur at 
1224, 1265, and 1420 cm'1, respectively,15"17 and the Si=O 
stretching frequencies of Cl2SiO and F2SiO are 1240 cm"117 and 
1309 cm"1,18 respectively. All of these results compare well with 
the bands observed for our trapping product at 1204 (presumably 
free) and 1186 cm"1 (presumably a weak complex with N2O, not 
surprising for the undoubtedly highly polar Si=O bond). The 
18O isotope shifts of the Si=O stretch in Cl2SiO and F2SiO are 
37 and 31 cm-1, respectively; these can be compared with the value 
35 cm"1 observed for our product. 

An MNDO19 calculation of vibrational frequencies and in­
tensities of 3 predicts the Si=O stretch to fall at 1179 cm"1 for 
16O and 1143 cm"1 for 18O; the calculated isotope shift is 36 cm"1. 
The Si=O stretch is calculated to have the highest intensity of 
any vibrational mode above 400 cm"1. An identification of ad­
ditional vibrational transitions is clearly desirable but is hampered 
by the presence of the unreacted starting material, dodeca-
methylcyclohexasilane, and the byproduct, decamethylcyclo-
pentasilane. 
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Tropical marine sponges are a fertile source of secondary 
metabolites with diverse and often novel molecular architecture.1 

Many of these compounds also exhibit in vitro antimicrobial 
properties2 and thus have generated much interest among synthetic 
and medicinal chemists, as well as among marine ecologists. A 
majority of known metabolites are terpenoid. Tyrosine and in-
dole-derived structures constitute a second sizable group. PoIy-
ketides, on the other hand, are rare and had received little attention 
beyond research on the fatty acid composition of the Demos-
pongiae3,4 until the recent biochemical interest in membrane 
structure and function.56 In this Communication we report 
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Figure 1. Computer-generated perspective drawing of halenaquinone. 
Hydrogens are omitted for clarity and no absolute configuration is im­
plied. 

isolation and structure of a new pentacyclic polyketide, which 
possesses in vitro antibiotic activity against Staphylococcus aureus 
and Bacillus subtilis? 

Frozen Xestospongia exigua% was lyophilized and successively 
extracted at room temperature with hexane, benzene, dichloro-
methane, and ethanol. The residues were scanned by 1H NMR. 
The benzene extract was chromatographed on Bio-Beads S-X89 

(toluene) then Bio-Sil A9 (CH2Cl2/EtOAc, 1:1) and finally by 
HPLC (Partisil M9,10 C6H6/EtOAc, 2:1). The major metabolite 
was a yellow solid mp >250 0C dec, [a]2i

D +22.2° (c 0.124, 
CH2Cl2). A composition of C20H12O5 was secured by high-res­
olution mass spectrometry (m/z 332.06847; calcd for C20H12O5 
332.06847). Successive losses of CO and C2H2 from the molecular 
ion, an IR band at 1680 cm"1, a two-proton singlet at 5 7.13 in 
the 1H NMR spectrum, and four 13C signals at 8 183.8(s), 
183.3(s), 138.8(d), and 138.7(d) all pointed to a 2,3-unsubsti-
tuted-1,4-naphthoquinone, which was subsequently confirmed by 
treatment with Ac2O, Zn, and Bu4NBr, which readily yielded a 
leucodiacetate, mp 186-188 0C, [a]25

p +62.1° (c 0.066, 
CH2Cl2),

11 and which we name halenaquinone (I).12,13 
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Halenaquinone (1), as defined by x-ray diffraction, contains 
a 2,4-diketofuran moiety. Both carbonyls are in fact vinylogous 
esters. The low-field 13C NMR resonance at 5 190.9 must be 
assigned to the /3-substituent in analogy with a S 192.8 value of 
C-I in ipomeanin (2),14 while the 5 169.5 signal is compatible with 
the a-keto carbon, comparable to the C-7 resonance at S 172.5 
in demethoxyviridin (3).15 

Halenaquinone (1) was crystallized from a mixture of benz­
ene/ethyl acetate (2:1), by vapor diffusion with hexane. Successful 
diffraction16 revealed all but one non-hydrogen atoms in the 
two-molecule asymmetric unit. See the supplementary material 
for additional crystallographic details. A computer-generated 
perspective drawing of the final X-ray model of halenaquinone 
(1) is given in Figure 1. The X-ray experiment did not define 
the absolute configuration so the enantiomer shown is an arbitrary 
choice. 

Halenaquinone (1) not only is a rare polyketide secondary 
sponge metabolite, but it also represents a new pentacyclic system. 
The closest literature analogue is benzo[«/]naphth[2,3-./]indole-
4,7,12(5.rY)-trione (4), which is described in the German patent 
literature as a potential dyestuff.17 
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Supplementary Material Available: Tables of fractional coor­
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observed and calculated structure factors (18 pages). Ordering 
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The stereochemical picture of isoprenoid biosynthesis established 
from previous studies suggests that the pro-AS hydrogen of me­
valonic acid (MVA) is lost in the formation of an (£)-isoprene 
residue, while the pro-AR hydrogen is eliminated in the formation 
of a (Z)-isoprene residue.3"5 No example contravening this has 
yet been found, and this stereochemistry is believed to be involved 
in the biosynthesis of all the isoprenoids including polyprenols. 
We have now found the unusual elimination of the pro-AS hy­
drogen of MVA during the formation of the (Z)-isoprene chain 
of the polyprenols, malloprenols, in Mallotus japonicus Muell Arg. 
(Euphorbiaceae). 

It has been previously established that the malloprenols are 
composed of a homologous series of polyprenols as shown in 
structures 1-3 and are biosynthesized by successive cis addition 

of isopentenyl pyrophosphate (IPP) to digeranyl pyrophosphate 
(GGPP) in that plant.6 

The labeling pattern in the (E)- and (Z)-isoprene units of the 
malloprenols was examined by incorporation of (4i?)- and 
(4S)-[2-14C,4-3H]MVAs. The potassium salts of these MVAs 
dissolved in water were fed to M. japonicus through cut stalks 
for 72 h. Malloprenol-9 (1), -10 (2), and -11 (3) were separated 
in the manner described6 and their radioactivities are shown in 
Table I.7 If the malloprenols are formed from double-labeled 
MVA following the expected stereochemistry of isoprenoid bio­
synthesis,3"5 the 3H/14C ratios in the malloprenols are expected 
to be as given in column A of Table I. However, the ratios 
observed for the malloprenols were not coincident with those 
expected. The 3H/14C ratios were in good agreement with those 
given in column B. This implies that the pro-AS hydrogen of MVA 
is eliminated during the formation of the (Z)-isoprene chain of 
the malloprenols. 
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